
Processing Graph Method Tool
(PGMT)

Installation Manual
b y

Wendell L. Anderson
October 31, 2002

The Processing Graph Method Tool (PGMT) product is being released under the GNU General Public
License Version 2, June 1991 and related documentation under the GNU Free Documentation

License Version 1.1, March 2000. http://www.gnu.org/licenses/gpl.html

Introduction:

This report describes the steps necessary to install the Processing
Graph Method Tool (PGMT) onto a system of computers operating in a UNIX
and/or LINUX environment. PGMT is an implementation of the PGM
specification that includes the software necessary to run a data flow graph on
a collection of processors. The tool contains a Graphical User Interface f o r
creating, saving, and translating graphs into C++ code; libraries to support the
linking and run-time execution of a graph; debugging aids; and a tool f o r
generating the code necessary to transfer user-defined data types between
computers using the Message Passing Interface (MPI) standard.

This document has been written under the assumption that the user is
familiar with UNIX commands, directory structures, and XWindows, but makes
no assumptions about the user’s knowledge of the Processing Graph Method
(PGM). Instructions for using the tool to develop programs can be found in the
PGMT User’s manual. PGMT has been successfully installed on Suns, SGI’s, and
Linux-based PC’s as well as members of the SGI Origin supercomputers.

The software has been developed using g++ (GNU C++) and Java 2. PGMT
uses the Message Passing Interface (MPI) for inter-processor communication.
PGMT is released under the GNU public license and is available on CD-ROM by
sending e-mail request to pgmt-support@ait.nrl.navy.mil or a request in writing to

Commanding Officer
Attn: Code 5580
Naval Research Laboratory
4555 Overlook Avenue
Washington, D. C. 20375

PGMT may also be downloaded over the internet from the site pgmt.ait.nrl.mil.
The distribution consists of the seven files listed in Table 1.

COPYING GNU General Public License
DOC_LIC GNU Free Documentation License
SUPPORT.pdf PGMT documentation in PDF format

CONTRIB.pdf list of contributors in PSF format
PGM2.tgz gzip tar ball of the documentation
PGM2_DOC.tgz gzip tar ball of PGM2
PGM2_SUP.tgz gzip tar ball of ancillary software

Table 1: Distribution Files

 The DOC_LIC and COPYING files outline the conditions of the GNU Free
Software Foundation on the use and distribution of PMGT and should be read
before installing the software. The two pdf files can be read and printed using
the acrobat reader available from http://www.adobe.com. These files provide
the names and contact information of the members of the team who developed
PGMT as well as copies of their papers and manuals.

The three gzip tar balls contain the PGM2 software, free third par ty
software used by the tool, and a second copy of the documentation. The
support software package is only needed if some of the software mentioned
under systems requirements is not already resident on the system or javaHelp
is not part of the java installed java. The support software included in the
distribution is listed in Table 2

Software File Size (MB)
g++ 2.95.2 gcc-2.95.2.tar.gz 1 2

g++ library patch glibc-2.2.patch < 1
Java 1.3 j2sdk-1_3_1_03-linux-i386-rpm.bin 2 5
JavaHelp javahelp1_1-unix-no_rt.bin 8

MPICH C++ bindings mpi2c++.tar.gz < 1
MPICH 1.2.1 mpich-1.2.1.tar.gz 9

Table 2: Support Software

Throughout these instructions, whenever the user is asked to enter data
from a keyboard, items in bold should be typed exactly as they appear while
items in italics are user dependent. Whenever the instructions indicate a line
is to be entered a carriage return is entered after the typing of the line. For
example, if the user is asked to enter the line

 cd full_directory_name

the user should type cd, the actual directory name, and the enter key.

System Requirements

PGMT has been developed using the GNU g++ 2.95.2 compiler and java 2 .
For passing data between processors, the tool uses the Advanced
Programming Interface (API) of the Message Passing Interface (MPI) and has
been developed using the MPICH implementation of MPI. The installation
procedure uses GNU’s gmake utility to build the libraries and executables o f
PGMT. The PGMT Graphical User Interface (GUI) uses the javaHelp libraries t o
supply on line help for the GUI.

Before installing PGMT on a network of processors, the user should
verify that the operating system directories for the processors have g++
2.95.2, gmake, java 2, and an implementation of MPI installed. If all of this
software is not available then the user must have the system administrator
install the missing software on the operating systems. In the case o f
heterogeneous systems, or systems with processors running di f ferent
versions of the operating system, a copy of the software must be available f o r
each system. Software packages for installing the previously mentioned
software are available as part of the distribution.

 Since in the case of installation on a PC LINUX system, the user is
often also the system administrator, instructions are contained in Appendix A
for the installation of the support software on a RedHat LINUX system.

When installing PGMT on a High Performance Computer (such as an SGI
Origin 3000 series), the user should use the native MPI implementation. Since
this implementation has been tuned to the specific platform, using the native
MPI results in a more efficient operation of the PGMT code.

PGMT Installation

 After the user has copied the PGMT distribution tar balls to a disk directory,
the required tar balls should be unzipped and unbarred using the commands

gunzip PGM2.tgz
tar -xvf PGM2.tar

These commands will put installation software into the directory PGM2 residing
in the current directory.

After the files have been extracted, the user should change his directory
to the directory PGM2/config and create a new configuration fi le
pgm2_system.csh. A template of the configuration file is contained in
pgm2_template.csh . The configuration file consists of four parts:
definitions needed to build and run the basic PGMT application, those needed
for using the debugging portion of PGMT, those needed for building the tool f o r
using user-defined data types, and additions to the path and aliases.

The first part of the configuration file defines the environmental
variables used by PGMT (Table 3).

PGM2_HOME PGMT root directory
PGM2_MPI MPI root directory
PGM2_TYPE Interconnection type
PGM2_HOST Name of Host
PGM2_CC C compiler to use
PGM2_CCC C++ compiler to use
PGM2_LDLIBS Libraries for linking
PGM2_LDFLGS Linker flag(s)
PGM2_GETTIME Flag for presence of gettime

Table 3: PGMT environmental variables

PGM2_HOME is set to the full path name for the directory containing the
PGM2 directory. PGM2_MPI is the directory that contains the implementation
of MPI used by PGMT. PGM2_HOST is the name of the current host computer.
PGM2_CC and PGM2_CCC are the names of the C and C++ compilers and may
also include default switch specifications. For implementations using MPICH
these variables will begin with mpicc and mpiCC respectively.
PGM2_LDFLAGS and PGM2_LDLIBS specify default flags and libraries
respectively for the C++ linkers. Finally, PGM2_GETTIME is a flag indicating
whether or not the function gettime is part of the system software. While
gettime is usually found in UNIX systems, Linux systems usually do not have i t .
When it is not present, PGMT provides a version.

The second part of the .csh file sets up the environmental variables f o r
running PGMT in a debug mode. The environmental variables PGM2_CC and
PGM2_CCC are redefined so that the -DDEBUG switch is used when the PGMT
code is compiled ensuring that the debug code is included in the executable f o r

the program. The other environmental variables are set to determine at run-
time the set of debug statements to be printed out. These lines are
commented out in the template version of the .csh file and should be
commented out in the .csh file created by the user.

The third part of the .csh files contains the definitions of the variables
required to build and test C++2MPI (mtool) the software that allows the user
to create his own data types without worrying about the details of MPI data
types. Further explanations of these environmental variables can be found in
the C++2MPI integration manual.

Finally in the last part of the configuration file, the path is updated so
that it contains the directories of the PGMT installation executables and
aliases are established for the GUI and gmake.

Examples of pgm2_system.csh files for a SUN workstation, an SGI
workstation, a Red Hat Linux PC, and an HPC system are can be found in the
directory PGM2/config.

Once the .csh has been created, it should be invoked by the command

source ${PGM2_HOME}/config/pgm2_system.csh

In order to avoid typing this command every time the user logs in, this
command line can be included in the user’s .cshrc file.

Since the GUI uses javaHelp, this software must be installed if it is not
part of the Java resident on the system. To install javaHelp, unzip and untar
the support software by entering the commands

gunzip PGM2_SUP.tgz
tar -xvf PGM2_SUP.tar

and then change the working direct to the support sub-directory by issuing the
command

cd ${PGM2_HOME}/support

Next install javaHelp in the PGM2 directory by entering the command

 javahelp1_1-unix-no_rt.bin

The program asks the user to select a java virtual machine by typing a number.
Type 1 and click on the displayed window. Click the Next button until a window
asking for the installation directory appears. Insert PGM2/ before jh1.1 in
the path name displayed and click ok. javaHelp will now be installed.

After javaHelp has been installed, the user should install the PGMT GUI by
entering the commands

cd ${PGM2_HOME}/src/GUI
make
make install
make cleanup

The next step is to install C++2MPI, the software for generating MPI
code for user defined data types. This is accomplished by executing the
following commands

cd ${PGM2_HOME}/src/mtool
make
make install
make cleanup

In order to verify that mtool (C++2MPI) has been properly built and
installed, the tests provided in the Makefile in ${PGM2_HOME}/src/mtool
should be executed. The tests are run with the command

make test

The expected results from these tests are given in Appendix B of this manual.
Significant differences should be reported to pgmt-support@ait.nrl.navy.mil.

Testing the PGMT Installation

To verify that the PGMT software has been properly installed and
configured, the user should build and run the Sort and TestDataType programs.
The program Sort sorts a list of 32 floating point numbers and prints them out
in ascending order. The TestDataType program reads and writes a variable o f
type phone (a user defined data type) to a queue in a graph.

To run either of the tests, the user must first log into the system o f
interest and execute the configuration file by using the commands

source ${PGM2_HOME}/config/pgm2_system.csh

To build and run the Sort program the user enters the commands

cd ${PGM2_HOME}/apps/Sort
make
run

If all the software has been installed properly, 32 lines of the form

O u t nn is fffff

(where nn ranges from 0 to 31 and fffff are floating point numbers in
increasing numerical order) will be printed to the screen.

To build and run the TestDataType program the user enters the
commands

cd ${PGM2_HOME}/apps/TestDataType
 make
 run

If the software has been properly installed then the two lines

Onoff = 1.0 Phase = 0.5
Onoff = 1.0 Phase = 0.5

will be printed out

References

 1. Anderson, W., " Processing Graph Method Tool (PGMT) Installation Manual”
October, 2002
 2. Anderson, W., " Processing Graph Method Tool (PGMT) User's Manual”,
October, 2002
 3. Bharadwaj, K. and Stevens, R., "The Graph State File Specification", May,
2001
 4. Boroujerdi, Ali, "Scheduler Documentation" ,June, 2001
 5. Collins, J. "An Approach to Scheduling Task Graphs with Contention in
Communications", June, 2001
 6. Collins, J. "Scheduling in PGMT", April, 2002
 7. Hillson, R., "C++2MPI/PGMT Integration". July, 2002

 8. Hillson R. and Iglewski, M. C++2MPI: A Software Tool for Automatically
Generating Datatypes from C++ Classes", IEEE Proceedings of the International
Conference on Parallel Computing in Electrical Engineering (PARALEC 2000),
27-30 August 2000, Trois-Rivieres Quebec CA, pp. 13-17
 9. Iglewski, M. , "Processing Graph Method - GUI Handbook", July, 2002
10. Kaplan, D., "An Introduction to the Processing Graph Method", March, 1997
11. Kaplan, D., “PGM Documents Synopses”, October, 2002
12. Kaplan, D. and Stevens R. , " "Processing Graph Method 2.1 Semantics",
July, 2002
13. Scannell, C. "GramGraph Graphical User Interface", March, 2002
14. Scannell, C. "Interfacing the Command Program to a PGM Graph", June,
2002
15. Stevens. R., "Documentation of the Graph Class Library (GCL)", November,
2001
16. Stevens, R. , "Draft Notes for GUI Forms", July, 2002
17. Stevens, R. , "Handbook for Authors of Transition Statements", July, 2002
18. Stevens, R. , "Distributed Processing in PGMT", August, 2002
19. Stevens, R. , "Specification for the Translator Output", January, 2002

APPENDIX A
PGMT Support Installation Under Red Hat Linux

This appendix contains a description of the installation of the support
software required by PGMT on Red Hat 8 LINUX system. After completion o f
this section the user should be able to install and successfully test the PGMT
software. If problems arise during the installation or testing that the installer
cannot resolve, send e-mail to pgmt-support@ait.nrl.navy.mil.

The RedHat LINUX software is available on CR-ROM or can be downloaded
from http://www.redhat.com/download/mirror.html.

The user should log into the root account and copy PGM2_SUP.tgz into the
/source directory. To install g++ and mpich the user should perform the
following steps.

1.) Untar the gcc
/bin/mkdir --verbose -p /source/gcc-2.95.2_linux
cd /source
tar xvf gcc-2.95.2.tar.gz

2) Patch the gcc source
cd /source
patch -p0 < glibc-2.2.patch

3) Build gcc binaries
cd /source/gcc-2.95.2_linux
../gcc-2.95.2/configure --prefix=/usr/local/gcc-2.95.2
make
make install

4) Compile a gcc-2.95.2 version of mpich-1.2.1
cd /source
tar xzf mpich-1.2.1.tar.gz
cd /source/mpich-1.2.1/
./configure -prefix=/usr/local/gcc-2.95.2 \

-cc=/usr/local/gcc-2.95.2/bin/gcc \
-c++=/usr/local/gcc-2.95.2/bin/g++

make
make install
make clean

APPENDIX B

 This appendix contains the output that should be obtained from the mtool
tests for the mtool utility. If there are significant differences between the
output obtained by running the mtool test and this output, send e-mail with the
output to pgmt-support@ait.nrl.navy.mil.

test1: sending a variable of a simple class
ex1 successfully completed

test2: complete example prepared by Roger Hillson
StatusProbe.MPI_Source = 1
StatusProbe.MPI_Tag = 99
StatusProbe.MPI_Error = 0
Received: x1: 1 x2: 4 z: 12.340000
StatusProbe.MPI_Source = 2
StatusProbe.MPI_Tag = 99
StatusProbe.MPI_Error = 0
Received: x1: 2 x2: 4 z: 24.680000
StatusProbe.MPI_Source = 3
StatusProbe.MPI_Tag = 99
StatusProbe.MPI_Error = 0
Received: x1: 3 x2: 4 z: 37.020000

Send class instance report_s: rep.x1 1 rep.x2 4 rep.z 12.340000

Send class instance report_s: rep.x1 3 rep.x2 4 rep.z 37.020000

Send class instance report_s: rep.x1 2 rep.x2 4 rep.z 24.680000

test3: sending a variable of a class containing a field of another class
ex3 successfully completed

test4: sending a variable of a derived class
ex4 successfully completed

test5:sending a variable of a derived class with virtual functions
ex5 successfully completed

test6: sending a variable of a templated class
ex6 successfully completed

test7: sending a structure with a private member
ex7 successfully completed

test8: sending a variable of a templated class with templated base
ex8 successfully completed

test9: sending a variable of a local class
ex9 successfully completed

test10: processing more than one file
ex10 successfully completed

test11: processing a file with a pointer typedef
gmake[2]: [all] Error 1 (ignored)
***** pointer component detected

test12: processing a file with a class containing a pointer var
gmake[2]: [all] Error 1 (ignored)
***** pointer component detected

test14: processing a file with a base class containing a pointer var
gmake[2]: [all] Error 1 (ignored)
***** pointer component detected

test15:sending a var of a templated class with an arg of a templated class
ex15 successfully completed
P4 procgroup file is ../machineFile.

test16: sending a var of a templated class with an arg being a value:
ex16 successfully completed

test17: checking multiple calls of AIT_build_T_MPI_datatype routine
ex17 completed successfully

test18: checking adding existing symbols to *.a
ex17 completed successfully
P4 procgroup file is ../machineFile.
ex17 completed successfully

tes t19:
ex19 successfully completed

test20: sending a var of a class with members of predefined types
ex20 successfully completed.

tes t21:
ex21 successfully completed.

test22:sending a variable of non-templated class with templated base
ex22 successfully completed.

tes t23:
ex23 successfully completed

test24: checking whether the same handles for duplicate typemaps
ex24 successfully completed
ex24 successfully completed
ex24 successfully completed
ex24 successfully completed

test25:sending a var of a templated class with an arg of a templated class
ex25 successfully completed

test26: checking non-default output file names
ex26 successfully completed

test27: source files in different directories
ex27 successfully completed

test28: sending a value of a typedef not being a class
ex28 successfully completed

MyList.h contains the following prototypes: complex.h fcomplex.h.
There are user-specified leaf types.
Build both the default and derived MPI datatypes.
Process 0 constructs complex variables.
Process 3 constructs complex variables.
Process 1 constructs complex variables.
Process 2 constructs complex variables.
3: Pass S/R test for float variable.
receive complex variable on 3
3: Pass S/R test for complex variable.
1: Pass S/R test for float variable.
receive complex variable on 1

1: Pass S/R test for complex variable.
2: Pass S/R test for float variable.
receive complex variable on 2
2: Pass S/R test for complex variable.

